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Background

@ Sparsity-aware learning has offered novel theoretical tools and
solutions to challenging practical problems in various sectors.

@ Applications include biomedicine, astronomy, signal processing,
wireless communications, and data science.

@ Sparsity-aware learning can be achieved from either a Frequentist
path or a Bayesian path.
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Sparsity-aware learning is capable of

@ improving the overall parameter estimation performance (in terms of
bias and variance);

@ guarding against over-fitting, particularly when data samples are
scarce;

@ coping with ill-conditions, such as rank-deficient covariance
matrices,etc;

@ providing a solution to underdetermined linear system of equations;

@ generating parsimonious models with sparse and interpretable signal
representation.
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Classic Examples: Echo Path Representation

@ Sparsity is an attribute that is met in a plethora of natural signals,
because nature tends to be parsimonious.

@ Echo path vector comprising the values of impulse response samples is
sparse.

0 02 04 06 0.8 1
t [sec]

Impulse response function of an echo path in a telephone network. Short duration
and no prior knowledge about its appearance in time.
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Classic Examples: Image Compression

~0 2 3
@ (b) x10°

(a) A 512 x 512 image; and (b) the magnitude of its discrete cosine transform
(DCT) components in descending order.

@ Heart of compression: More than 95% of the total energy contributed
by only 5% of the largest components.
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Scope of Tutorial

@ This tutorial will focus on sparsity-aware learning via Bayesian path.

@ This tutorial will show sparsity-promoting priors and inference
strategies for modern Gaussian process, Bayesian neural network, and
tensor decomposition models.
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Scope of Tutorial

@ This tutorial will focus on sparsity-aware learning via Bayesian path.

@ This tutorial will show sparsity-promoting priors and inference
strategies for modern Gaussian process, Bayesian neural network, and
tensor decomposition models.

@ This tutorial was prepared mainly based on:

@ L. Cheng, F. Yin, S. Theodoridis, S. Chatzis and T. -H. Chang,
“Rethinking Bayesian Learning for Data Analysis: The art of prior and
inference in sparsity-aware modeling,” in IEEE Signal Processing
Magazine, vol. 39, no. 6, pp. 18-52, Nov. 2022.

@ Sergios Theodoridis, “Machine Learning: A Bayesian and Optimization
Perspective, Academic Press, 2nd Edition, 2020.
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Organization

The Art of Inference:
= Evidence
/ ensor Maximization
Modeling for Decomposition and Variational

Three Case Approximation
Studies Section ppSection

The Art of Prior:
Sparsity-Aware

Recent Tools
Philosophy

Bayesian Philosophy

Linear Parametric Nonlinear Nonparametric
Regression Regression

Bayesian Learning Basics Section
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© Sparsity-Aware Learning: from Frequentist to Bayesian
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Section Goals

This section aims to
@ provide some basics about Bayesian learning philosophy;
@ introduce important notations and quantities of Bayesian learning;

@ introduce Bayesian parametric and nonparametric models.
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Brief Review of Frequentist Path

In the past, more dominantly, sparsity-aware learning was conducted via
regularized optimization of the general form:

~

0 =arg mein UD;0)+ X-r(0),
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Brief Review of Frequentist Path

In the past, more dominantly, sparsity-aware learning was conducted via
regularized optimization of the general form:

~

0 = arg mein UD;0)+ X-r(0),

where
@ 0O represents the desired model parameters;

e /(D;0) is a cost function w.r.t. a finite dataset, D = {y, X}, to
measure the data fitting performance;

r(0) is a regularization function w.r.t. the model parameters, 6, to
steer the sparsity structure embedding;

A is a regularization parameter to balance data fitting and sparsity
structure embedding.
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RIDGE Regression vs. LASSO Regression

@ RIDGE regression adopts least-squares loss and 2 norm as
regularization,

O = argmin ((y — X0)7(y — X6) + A|6]]2) .
@ RIDGE regression admits a closed-form solution:

0r = (xTx n )\I)il XxTy.
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RIDGE Regression vs. LASSO Regression

@ RIDGE regression adopts least-squares loss and 2 norm as
regularization,

O = argmin ((y — X0)7(y — X6) + A|6]]2) .
@ RIDGE regression admits a closed-form solution:

0r = (xTx n )\I)il XxTy.

@ The solution has no sparsity structure.
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@ LASSO regression adopts least-squares loss but ¢ norm as
regularization,

6, = argmin <(y —X0)T(y — X0) + /\HGH1> .
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@ LASSO regression adopts least-squares loss but ¢ norm as
regularization,

6, = argmin <(y —X0)T(y — X0) + )\HGH1> .

@ LASSO regression can be equivalently written as

6, = argming(y — X0)T(y — X6)
st [0l <p

or (also known as basis pursuit denoising)

éL: argming ||6||1
st. (y—X0)T(y—X0)<e’

@ The solution requires iterative algorithms but shows sparsity structure.
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References for Frequentist Path

@ Chapter 9 and 10 of Machine Learning: A Bayesian and Optimization
Perspective by Sergios Theodoridis.

@ Chapter 13 of Machine Learning: A Probabilistic Perspective by
Kevin P. Murphy.

@ Various Tutorials given at NeurlPS, ICLR, AAAl,etc, in the past five
years.
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The Heart of Bayesian Learning

In this tutorial, we will rethink sparsity-aware learning via the Bayesian
path paved by the elegant and generic Bayes' Theorem.

“Probability is orderly
opinion ... inference
from data is nothing
other than the revision
of such opinion in the
light of relevant new
information.”

-- Thomas Bayes
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Basics of Bayesian Philosophy

@ Let D be the observed (training) dataset.

@ Let M be the underlying model for having generated the data.

o Let @ € REX! be the unknown model parameters, treated as random
variables.

@ Let @ ~ pr(0;mp) be the prior distribution of 6.

@ Let 1, be a set of deterministic yet unknown hyperparameters to
specify the prior.

o Let pr(D)|0) be the /ikelihood to describe the observed data given
the values of the parameters.
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Bayes' Theorem and Important Quantities

v Pm(DIO)pm(0:mp)
Pu{OID:n) = prm(Dim)

where

e Prior: papm(0;mp)
e Likelihood: pa(D|6)

e Posterior: pr(0|D;m)

e Evidence/Marginal Likelihood: pa(D;n)
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Bayes' Theorem and Important Quantities

-y — Pm(DI6)prm(6:mp)
pa(B[D; ) = AT ERU )
where
° : pam(6:mp)
° : pm(D]0)
e Posterior: pr(0|D;m)
e Evidence/Marginal Likelihood: pa(D;n)

@ Evidence is computed as the marginalization of the likelihood:

pua(Dim) = [ paa(DIO)ori(6:m,)db.

Classic ML estimator can be obtained via:

i = arg max log pm(Dim)
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Evidence vs. ELBO

e Evidence/Marginal likelihood is not always analytically tractable due
to the multiple integrals involved.
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Evidence vs. ELBO

e Evidence/Marginal likelihood is not always analytically tractable due
to the multiple integrals involved.

@ For Bayesian inference, we could alternatively consider the evidence
lower bound (ELBO):

log pat(D;m) > L(q(6);m) £ /q(e) Iogwd‘)-
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Evidence vs. ELBO

e Evidence/Marginal likelihood is not always analytically tractable due
to the multiple integrals involved.

@ For Bayesian inference, we could alternatively consider the evidence
lower bound (ELBO):

log pat(D;m) > L(q(6);m) £ /q(e) Iogwd‘)-

@ Tightness of ELBO is determined by the closeness between the
variational distribution g(@) and the posterior pr((60|D; n).

@ Solving ELBO maximization problem for different learning models:

max L£(q(0);n).
max £(q(6)in)

Feng Yin, Lei Cheng, Sergios Theodoridis ICASSP-2023 TUTORIAL, Rhodes, Greece 2023.06.04



Parametric Model vs. Nonparametric Model

@ Parametric Model:

@ adopts a finite set of parameters 0,

@ outputs point estimate solely relying on the model parameters trained
based on the observed data, D,
© Bayesian linear regression model is a represented one.

Feng Yin, Lei Cheng, Sergios Theodoridis ICASSP-2023 TUTORIAL, Rhodes, Greece 2023.06.04 18 /106



Parametric Model vs. Nonparametric Model

@ Parametric Model:
@ adopts a finite set of parameters 0,
@ outputs point estimate solely relying on the model parameters trained
based on the observed data, D,
© Bayesian linear regression model is a represented one.

@ Nonparametric Model:
@ adopts an infinite dimensional 8, often regarded as a random function,
@ keeps updating 0 as data D expands with finer granularity,
© Gaussian process model is a represented one.
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Parametric Model: Bayesian Linear Regression

We start with the ordinary linear regression model:

Yn="Ff(xp;0)+v,, n=1,2 .. N.
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Parametric Model: Bayesian Linear Regression

We start with the ordinary linear regression model:
Yn="Ff(xp;0)+v,, n=1,2 .. N.
where the regression function is
f(x;0)=0"x,

and
® x = [x1,x2,...,x(] T is the input/feature vector of size L,
@ 0O is the vector of model parameters following certain distribution,

@ vp,,n=12 .. N are independent noise terms.
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Classically, by assuming:

e Gaussian likelihood, owing to {v,} g N(vp;0,871), where 3
represents the noise precision, and

D‘H HNynyOTxn,B )

n=1
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Classically, by assuming:

e Gaussian likelihood, owing to {v,} g N(vp;0,871), where 3
represents the noise precision, and

D‘H HNyn,OTxn,ﬁ )

n=1

@ Gaussian prior on the unknown parameters,

L
wm(0imp) = [[V(6::0,0;7),
I=1
where a is the precision for 6, and 1, £ [a1, a2, -+, /]
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We can derive then two important quantities:

@ Gaussian evidence obtained through marginalization:

puu(Dim) = [ pr(DI6)ori(8im,)d0

=N(y;0,37 1+ XA 1XT),

where A £ diag{ay, s, -+, a1} and n = [in,B]T.
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We can derive then two important quantities:

@ Gaussian evidence obtained through marginalization:
puu(Dim) = [ pr(DI6)ori(8im,)d0
=N(y;0,37 1+ XA 1XT),
where A £ diag{ay, s, -+, a1} and n = [in,B]T.
@ Gaussian posterior eventually derived from Bayes' theorem:
pm(0D;n) = N(0; p, ),

where

p=pEXTy,
S=(A+8X"TXx)L.

Often, point prediction is obtained by y, = p ' x,.
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Nonparametric Model: Gaussian Process

A representative example of Bayesian nonparametric model is the Gaussian
process model for machine learning with the definitions:

Definition 1: Gaussian process [Rasmussen, 2006]°

A Gaussian process is a collection of random variables, any finite number
of which have a joint Gaussian distribution.

OC.Rasmussen and C.Williams, Gaussian Process for Machine Learning, MIT Press;2006.
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Nonparametric Model: Gaussian Process Regression

A representative example of Bayesian nonparametric model is the Gaussian
process model for machine learning with the definitions:

Definition 1: Gaussian process [Rasmussen, 2006]°

A Gaussian process is a collection of random variables, any finite number
of which have a joint Gaussian distribution.

Definition 2: Gaussian process [Theodoridis, 2020]

A random process, f(x), is called a Gaussian process if and only if for any
finite number of points, x1, x5, -+, Xy, the associated joint probability
density function (pdf), p(f(x1),f(x2),---,f(xn)) is Gaussian.

OC.Rasmussen and C.Williams, Gaussian Process for Machine Learning, MIT Press;2006.
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o A real GP, f(x), is completely specified by its mean function m(x)
and its covariance function/kernel function k(x, x’) as

m(x) £ E[f(x)],
k (x,x’) =80 [(f(x) — m(x)) (f (x') —m (x/))] i
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o A real GP, f(x), is completely specified by its mean function m(x)
and its covariance function/kernel function k(x, x’) as

m(x) £ E[f(x)],
k (x,x’) =80 [(f(x) — m(x)) (f (x') —m (x/))] i

@ We denote a GP as
f(x)~gP (m(x), k (x, x": np)) .

@ Model representation power is determined to large extent by the
kernel function.
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Kernel Functions

@ Every specification of a kernel function determines to a family of
functions.
@ Some elementary kernel functions are:
@ Linear kernel (with 1, = 0p)

k(x,x";mp,) = 00+ x"x’'

@ Squared Exponential (SE)/Gaussian kernel (with 1, = [02,/5]T)

W12
k(x,x";mp) = oF exp <|x2£:”>

© Matern kernels, rational quadratic kernels, periodic kernels, local
periodic kernels, etc.
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Kernel Selection and Design

Many elementary kernel functions available

We focus on a class of interpretable and sparsity-promoting kernel
functions to form a GP prior.
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Gaussian Process for Regression

We consider the following GP regression model

y =f(x)+e¢,
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Gaussian Process for Regression

We consider the following GP regression model
y =f(x)+e,

where
@ y is a continuous-valued scalar output;

@ the underlying regression function is represented by a zero-mean
Gaussian process f(x) specified by k(x,x";n,);

@ the noise terms are Gaussian i.i.d. with zero-mean and unknown
variance 71;

@ The set of all unknown parameters, 1 = [, 3] .
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@ Given a finite number of training input points: X = [x1, X2, ..., Xn],
y =1y’

@ The selected Gaussian process prior boils down to a multivariate
Gaussian distribution, with

f:=[f(x1),f(x2),..., f(xn)]" ~N(0,K (X, X)).
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@ Given a finite number of training input points: X = [x1, X2, ..., Xn],
y =1y’

@ The selected Gaussian process prior boils down to a multivariate
Gaussian distribution, with

f:=[f(x1),f(x2),..., f(xn)]" ~N(0,K (X, X)).

@ The likelihood function, given f, is also Gaussian of the form:

p(ylfim) =N (y; f,87'1,).
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@ Given a finite number of training input points: X = [x1, X2, ..., Xn],
y =1y’

@ The selected Gaussian process prior boils down to a multivariate
Gaussian distribution, with

f:=[f(x1),f(x2),..., f(xn)]" ~N(0,K (X, X)).

@ The likelihood function, given f, is also Gaussian of the form:

p(ylfim) =N (y; f,87'1,).

Recall Fundamental Tasks

o Kernel selection/design
o Kernel hyperparameter optimization

@ Posterior prediction of novel data points
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Task: Kernel Hyperparameter Optimization

@ Conventionally, hyperparameters n), are derived from maximizing the
evidence.

@ Due to Gaussian process prior and Gaussian likelihood function, the
evidence in closed-form can be derived as:

p(y:n) = N(y; 0, K(X, X;np) + 6711).
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Task: Kernel Hyperparameter Optimization

@ Conventionally, hyperparameters n), are derived from maximizing the
evidence.

@ Due to Gaussian process prior and Gaussian likelihood function, the
evidence in closed-form can be derived as:

p(y:n) = N(y; 0, K(X, X;np) + 6711).

@ Such optimization problem is typically smooth but non-convex for
general regression and classification problems.

@ Inaccurate prediction will incur when a bad local optimum is found by
gradient descent type of methods.
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Task: Posterior Prediction

o Goal: To predict y, = [ys1, Y2, - Yen.] | given novel (test) inputs
Xe = [Xe,1,X4,2, ..., X4 n, ] from its posterior distribution
p(y«|D, Xi; ), often short as p(y.|y).
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Task: Posterior Prediction

o Goal: To predict y, = [ys1, Y2, - Yen.] | given novel (test) inputs
Xe = [Xe,1,X4,2, ..., X4 n, ] from its posterior distribution
p(y«|D, Xi; ), often short as p(y.|y).

@ The joint distribution of the training output y and test output y. can
be derived as

m NN<°’ [K(Xk&%—lln KRt *ﬁ)llm])'
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@ Applying the conditional Gaussian results, we obtain:

p(y«ly) ~ N (m, V),

where )
m é K(X*,X) [K(X7X) +ﬁilln]_ y,

V AK(X,, X,) + B8,
_K(X*;X) [K(X7X)+Billn]_1 K(X,X*)
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@ Applying the conditional Gaussian results, we obtain:
p(y«ly) ~ N (m, V),

where )
m é K(X*,X) [K(X7X) +Billn]_ y,

V AK(X,, X,) + B8,
- K(X*X) [K(XX) +Billn]_l K(XX*)

Interpretations

o The posterior mean can be seen as a linear predictor.

e The posterior variance accounts the difference between variance of the prior
and variance explained by D.

@ When using linear kernel the above results boil down to Bayesian
linear regression.
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Connections between GP and NNs

@ Each hidden layer comprises a large
number of nonliner activation
functions to mimic the role of
neurons in our brain.

1
K. Hornik, “Approximation capabilities of multilayer feedforward networks”, Neural Networks, 1991.
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Connections between GP and NNs

@ Each hidden layer comprises a large
number of nonliner activation
functions to mimic the role of
neurons in our brain.

@ Neural network (NN) can
approximate any smooth function
arbitrarily well according to the

universal approximation theorem
[Hornik'o1] 1

1
K. Hornik, “Approximation capabilities of multilayer feedforward networks”, Neural Networks, 1991.
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Connections between GP and NNs

Input-to-hidden u Hidden-to-output v

P (y1,92)

@ GP and single layer NN @ GP and infinitely wide DNN
[MacKay'98] 2 [Lee'18] 3
@ Neural network kernel @ Neural tangent kernel

2D. MacKay, “Introduction to Gaussian processes”, NATO AS/ series F computer and systems sciences, 1998.

J. Lee, et al., "Deep neural networks as Gaussian processes”, ICLR, 2018.
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Section Conclusion
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Outline

© Sparsity-Aware Gaussian Process Models
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Section Goals

This section aims to

@ show a family of interpretable and sparsity-promoting kernel prior for
nonparametric GP model;

@ show the kernel hyperparameter optimization process and its benefits;

@ explain the sparsity-aware property among other valuable ones.
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Linear Multiple Kernel Design

@ We focus on the big family of linear multiple kernels:

Q
k(X, X/) = Z a,-k,-(x, X/),
i=1

where the weights, o, i =1,2,--- | Q, need to be optimized.

@ The number of subkernels, @, is often set large to form an
over-complete dictionary of basis.

o Identify the most effective basis subkernels.
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@ Kernel design can be conducted either in raw input domain or in
frequency domain.

@ Design in raw input domain by ensembling a number of elementary
kernels = analysis-of-variance kernel family.

@ Design in frequency domain = sparse spectrum kernel family.
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Design in Frequency Domain

Lemma (of Bochner's Theorem)

For 1-D time series where x = t, T = t — t/, its stationary kernel function,
k(7), and the spectral density, S(w), form a Fourier pair:

k(t) = /Rl S(f)exp[j2nTw] df,

S(w) = /R K(r)expl-j2nru] d.

Note: for simplicity, we let t represent time and w represent normalized
frequency.
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First Sparse Spectrum (SS) Kernel

@ Inspired by Bayesian linear regression with an over-complete set of
trigononometric basis functions, {cos(27rw,-x),sin(27rw,-x)},-(‘):1. 4

e Feature mapping vector ¢(x) contains all @ basis functions.

4
M. Lazaro-Gredilla, J. Quinonero Candela, C. E. Rasmussen, and A. R. Figueiras-Vidal, " Sparse spectrum Gaussian
process regression,” J. Mach. Learn. Res., vol. 11, pp. 1865-1881, Aug. 2010.
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First Sparse Spectrum (SS) Kernel

@ Inspired by Bayesian linear regression with an over-complete set of
trigononometric basis functions, {cos(27rw,-x),sin(27rw,-x)},-(‘):1. 4

e Feature mapping vector ¢(x) contains all @ basis functions.

2
@ Choosing the weights to follow i.i.d. zero mean Gaussian, A/(0, %’)
the equivalent kernel function:

B yTigepy = B (x—x
k(x,x') = ¢() ons(zm,(x x).

@ The kernel hyperparameters, 1, = [00, w1, w2, ...,wQ]T, are to be
optimized.

4
M. Lazaro-Gredilla, J. Quinonero Candela, C. E. Rasmussen, and A. R. Figueiras-Vidal, " Sparse spectrum Gaussian
process regression,” J. Mach. Learn. Res., vol. 11, pp. 1865-1881, Aug. 2010.
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Spectral Mixture Kernel: Frequency Domain

e Wilson et.al. proposed Spectral Mixture (SM) kernel ® to
approximate the spectral density of the underlying kernel:

o

i=1 1/ 27?01-2 i

5A. Wilson and R. P. Adams, " Gaussian process kernels for pattern discovery and extrapolation,” in Proc. Int. Conf.
Mach. Learn. (ICML), Atlanta, GA, USA, 2013, pp. 1067 — 1075.
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Spectral Mixture Kernel: Frequency Domain

e Wilson et.al. proposed Spectral Mixture (SM) kernel ® to
approximate the spectral density of the underlying kernel:

o

i=1 1/ 27?01-2 i

@ @ is a preselected large number; «;, u;, 0,2 are the weight, mean
(center frequency) and variance of the j-th mixture component.

5A. Wilson and R. P. Adams, " Gaussian process kernels for pattern discovery and extrapolation,” in Proc. Int. Conf.
Mach. Learn. (ICML), Atlanta, GA, USA, 2013, pp. 1067 — 1075.
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SM Kernel: Raw Input Domain

e Taking the inverse Fourier transform of S(w) yields a stationary kernel
in the original input domain as

k(t,t;mp) = k(1 Za exp | %] cos(2nT ;)
ki(7)

@ The kernel hyperparameters 1, = [a1, pi1, 01, ..., @, g, 0q| " are to
be optimized.
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SM Kernel: Approximation Capacity

@ Approximate any stationary kernel arbitrary well in L; norm.

For any stationary kernel k(7) and an arbitrary € > 0, there exists Q. and
for m > Q,

[}

Proof: Based on Wiener's theorem of approximation.

exp| —272r ]cos(27r7',u,) k()| dr < e.
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SS Kernel vs. SM Kernel

S(w) S(@)
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& e
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o o
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B @ g 100
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%)
0 0
0 0.1 0.2 0.3 0.4 0.5 0 0.05 0.1 0.15 0.2 0.25 0.3
Normalized Frequency Normalized Frequency
(a) (b)

‘ = Underlying Spectral Density =——— SM Kernel = Sparse Spectrum Kernel |

SM kernel employs a mixture of Gaussian basis functions (blue curves)

SS kernel employs a mixture of Dirac deltas (red vertical lines)
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Numerical Difficulties of SS and SM Kernels

@ It is generally difficult to tune the hyper-parameters due to large-scale
non-convex optimization problem.

@ Slower convergence and rather high probability of hitting bad local
minimum.

@ Relatively high computational time for big dataset.
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Grid SM (GSM) Kernel

@ To obtain nicer optimization structure, fix the mean and variance
parameters to preselected grids, yielding the GSM kernel ©:

k(t,t;m,) = k(r Za exp [—212720,2] cos(2mT 1)
k()

6Feng Yin, S. Theodoridis, and Z.-Q. Luo, et.al. “Linear multiple lowrank kernel based stationary Gaussian processes
regression for time series,” |IEEE Trans. Signal Process., vol. 68, pp. 5260-5275, Sep. 2020.
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Grid SM (GSM) Kernel

@ To obtain nicer optimization structure, fix the mean and variance
parameters to preselected grids, yielding the GSM kernel ©:

k(t,t;m,) = k(r Za exp [—212720,2] cos(2mT 1)
k()

@ k() can be seen as a fixed sub-kernel without any hyper-parameters
to be tuned.

o The kernel hyperparameters 1, = o £ [a1, a2, ..., ] T > 0 are to be
optimized.

GSM kernel is essentially a linear multiple kernel!

6Feng Yin, S. Theodoridis, and Z.-Q. Luo, et.al. “Linear multiple lowrank kernel based stationary Gaussian processes
regression for time series,” |IEEE Trans. Signal Process., vol. 68, pp. 5260-5275, Sep. 2020.
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Inference Algorithms for GP with GSM Kernel

@ Evidence is mathematically tractable for GP model.
@ Maximizing the evidence is equivalent to
A =arg _min () £ yTC N a,02)y + logdet (C(a, 02))
=1x,0,

s.t. o> 0,05 > 0.

o Cla,02) 2 Z Y, a;K; + 021, is the overall covariance matrix
including the noise term.
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Inference Algorithms for GP with GSM Kernel

Evidence is mathematically tractable for GP model.
@ Maximizing the evidence is equivalent to

Ay =arg min Un) £ yT C e, 02)y + logdet (C(a, 02))

o,08

s.t. o> 0,05 > 0.

o Cla,02) 2 Z Y, a;K; + 021, is the overall covariance matrix
including the noise term.
o Let g(n) 2 y"C Y, 02)y and h(n) £= — log det (C(ax,02)).

The above is provably a difference-of-convex (DCP) problem.
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@ An effective way to handle DCP is via the majorization-minimization
(MM) algorithm.
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@ An effective way to handle DCP is via the majorization-minimization
(MM) algorithm.

e Introduce a so-called majorization function #(n,n*) of £(n) at
n* € © and solve instead

n**t! = arg min Z(n,n*),
neo

where 7 : © x © — R satisfies:

Q /(n,m) =4{(n) forn e O,

Q@ and 4(n) < ¥(n,n’) forp,n’ € O.
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@ Adopting the simple linear majorization to make the convex function
h(0) affine by performing first-order Taylor expansion.

o Consequently, (0, 0%) £ g(8) — h(6%) — V] h(6%)(6 — 6).
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@ Adopting the simple linear majorization to make the convex function
h(0) affine by performing first-order Taylor expansion.

o Consequently, (0, 0%) £ g(8) — h(6%) — V] h(6%)(6 — 6).

@ At each iteration, minimizing the MM cost function becomes a
convex optimization problem.

@ The converted problem can be further cast into a second-order cone
program (SOCP) problem solved efficiently by MOSEK.
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@ Adopting the simple linear majorization to make the convex function
h(0) affine by performing first-order Taylor expansion.

o Consequently, (0, 0%) £ g(8) — h(6%) — V] h(6%)(6 — 6).

@ At each iteration, minimizing the MM cost function becomes a
convex optimization problem.

@ The converted problem can be further cast into a second-order cone
program (SOCP) problem solved efficiently by MOSEK.

@ We also developed an ADMM algorithm that has the same
computational complexity.
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Rationale behind Sparsity Awareness

@ Treat the overall GP model as a sum of @ independent GP models.

o Each subkernel k;(x, x') = ¢] (x)¢i(x), where ¢;(x) : RE s RE,
with L' > L.

o Then, f(x) = S.2, 07 ¢;(x), where 8; ~ N'(0, o;1).

7D. P. Wipf and B. D. Rao, "Sparse Bayesian learning for basis selection,” IEEE Trans. Signal Process., vol. 52, no. 8, pp.
2153-2164, Aug. 2004.
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Rationale behind Sparsity Awareness

@ Treat the overall GP model as a sum of @ independent GP models.

o Each subkernel k;(x, x') = ¢] (x)¢i(x), where ¢;(x) : RE s RE,
with L' > L.

o Then, f(x) = S.2, 07 ¢;(x), where 8; ~ N'(0, o;1).

@ Mathematical proof follows the sparsity-promoting property of the
relevance vector machine for classic sparse linear model. *

7D. P. Wipf and B. D. Rao, "Sparse Bayesian learning for basis selection,” IEEE Trans. Signal Process., vol. 52, no. 8, pp.
2153-2164, Aug. 2004.
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Rationale behind Sparsity Awareness

@ Treat the overall GP model as a sum of @ independent GP models.

o Each subkernel k;(x, x') = ¢] (x)¢i(x), where ¢;(x) : RE s RE,
with L' > L.

o Then, f(x) = S.2, 07 ¢;(x), where 8; ~ N'(0, o;1).

@ Mathematical proof follows the sparsity-promoting property of the
relevance vector machine for classic sparse linear model. *

@ Maximizing the evidence is equivalent to finding the most relevant
basis vectors in the over-complete dictionary, {¢,~},.Q:1.

7D. P. Wipf and B. D. Rao, "Sparse Bayesian learning for basis selection,” IEEE Trans. Signal Process., vol. 52, no. 8, pp.
2153-2164, Aug. 2004.
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Outline

@ Sparsity-Aware Bayesian Neural Network Models
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Section Goals

@ We introduce sparsity-promoting techniques for pruning Bayesian
deep neural networks (DNNs).

@ That is, starting from a neural network with enormous number of
nodes, to optimally remove nodes and/or links.
@ We are going to follow two paths:

@ Path 1: The parametric one via the Gaussian Scale Mixture (GSM)
priors;

@ Path 2: The non-parametric one via the Indian Buffet Process (IBP)
prior.
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Revisit Fundamentals of DNN

1-st layer f-th layer (f + 1)-th layer F-th layer

@

'S

o Consider a fully connected DNN consisting of F layers.
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Revisit Fundamentals of DNN

1-st layer f-th layer (f + 1)-th layer F-th layer
1
Y1 v
o @
[ ) . =g (Z vl “’{2) : .
> i=1 .
> Y3 ’.
o @ ®

o Consider a fully connected DNN consisting of F layers.
o The number of nodes in the f-th (1 < f < F — 1) layer is a’.

@ For the i-th node in the f-th layer and the j-th node in the (f 4 1)-th
layer, the link between them has a weight W,j
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1-st layer f-th layer (f + 1)-th layer F-th layer

: :

o D
> i=1
[ ’ .

>

o The input vector to the (f + 1)-th layer: y" = [yf yf, .. ,y:f]T.
@ The link weights associated with the j-th node:

f _ f f f 1T
WJ = [le,WZj,"‘ ,Wafj] .
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1-st layer f-th layer (f + 1)-th layer F-th layer

o The input vector to the (f + 1)-th layer: y" = [yf yf, .. ,y:f]T.
@ The link weights associated with the j-th node:

f _ f f f 1T
WJ = [le,WZJ',"‘ ,Wafj] .

@ The output of the j-th node is:

af
T
e (et | =5 (] )
i=1

where g(+) is a nonlinear activation function.

51 /106
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Sparsity-Aware Modeling Using GSM Priors

@ The idea dates back to the pioneering work of D. J. MacKay. 8

@ NN with a single hidden layer, the link weights can be treated as
random variables.

8D. J. MacKay, " Probable networks and plausible predictions-a review of practical Bayesian methods for supervised neural
networks,” Network: Computation in Neural Systems, vol. 6, no. 3, pp. 469-505, 1995
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Sparsity-Aware Modeling Using GSM Priors

@ The idea dates back to the pioneering work of D. J. MacKay. 8

@ NN with a single hidden layer, the link weights can be treated as
random variables.

@ The link weights can be modelled by zero-mean Gaussian priors,
typically with a shared variance hyperparameter to encode the
tendency of being zero/sparse.

@ This induces an “inductive bias” of being sparse to the network.

8D. J. MacKay, " Probable networks and plausible predictions-a review of practical Bayesian methods for supervised neural
networks,” Network: Computation in Neural Systems, vol. 6, no. 3, pp. 469-505, 1995
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Sparsity-Aware Modeling Using GSM Priors

@ The idea dates back to the pioneering work of D. J. MacKay. 8

@ NN with a single hidden layer, the link weights can be treated as
random variables.

@ The link weights can be modelled by zero-mean Gaussian priors,
typically with a shared variance hyperparameter to encode the
tendency of being zero/sparse.

@ This induces an “inductive bias” of being sparse to the network.

@ The major difference between recent works and early ones lies in the
adopted priors.

8D. J. MacKay, " Probable networks and plausible predictions-a review of practical Bayesian methods for supervised neural
networks,” Network: Computation in Neural Systems, vol. 6, no. 3, pp. 469-505, 1995
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@ Global picture of node-wise sparsity rationale.
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@ For each random weight W; we adopt a sparsity-promoting GSM
prior:

p(wl) = / N (wl; 0, ¢E)p(¢tim)dc
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@ For each random weight W; we adopt a sparsity-promoting GSM

prior:

p(wl) = / N (wl; 0, ¢E)p(¢tim)dc

o Functional form of p((};;n) below corresponds to a GSM prior.

[ GSM prior p(w)

Mixing distribution p(¢;)

Student’s t

Inverse Gamma: p({/;mp = [a, b]) = 1G(¢); a, b)

Normal-Jefferys

Log-uniform: p(¢rimp =[]) \?I/I

Laplacian

Gamma: p({;mp = [a, b]) = Ga({; a, b)

Generalized hyperbolic

Generalized inverse Gaussian:

p(Ciimp = [a, b, \]) = GIG(¢j; a, b, \)

Horseshoe

¢ =T, mp = [a,b]
Half Cauchy: p(7;) = CT(0, a)
p(vr) = C*(0,b)
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@ Next, we show how to conduct node-wise sparsity-aware modeling.

@ Group the weights {w&r j’:ll

common scale parameter C,-f to their GSM priors, i.e., C}; = ,-f,Vj.

connected to the i-th node, and assign a
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@ Next, we show how to conduct node-wise sparsity-aware modeling.
@ Group the weights {w 11 connected to the /i-th node, and aSS|gn a
common scale parameter C,-f to their GSM priors, i.e., C-- =(; F V.

@ The prior modeling for the i-th node related weights {w; }" .
f+1 f+1
P} = [ U1 (¢l mdc]

= / [T N 0.¢h)p(ctm)dc
j=1

55 /106
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P (64, 62)
P (6, 6)

The joint probability distribution of the model parameters in 2D space. (a) The
Laplacian distribution. (b) The Gaussian distribution.

@ Heavy-tail Laplacian distribution peaks sharply around zero and falls
slowly along the axes, thus promoting sparse solutions.

@ Gaussian distribution decays more rapidly along both dimensions
when compared to the Laplacian distribution.
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P (64, 65)
P (64, 6)

-5 _5
(b)

(a) The Student's t distribution versus (b) the horseshoe distribution.
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Sparsity-Aware Modeling Using IBP Prior

@ The previous approach has a major drawback, i.e., the number of
nodes per layer has to be specified and pre-selected.
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Sparsity-Aware Modeling Using IBP Prior

@ The previous approach has a major drawback, i.e., the number of
nodes per layer has to be specified and pre-selected.

@ In contrast, we now turn our attention to non-parametric techniques
for link-wise sparsity.

@ We are going to assume that the nodes per layer are theoretically
infinite (in practice a large enough number) and then use the IBP
prior to enforce sparsity.
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@ Global picture of the rationale behind link-wise sparsity-aware

modeling.
f-th layer (f + 1)-th layer f-th layer (f + 1)-th layer
@ @, @ L
: ... 9. -
i-th node ’ . i-thnode """, ' :
' . Jj-th node ~‘ Jj-th node
consider the link i -> j
the link i -> j can be removed
P P when tl.1e binary Modeling{z{j}
wi; X Z5; " variable via IBP prior
Zi; = 0
o We multiply each weight, i.e., WUf with a corresponding auxiliary

(hidden) binary random variable, z,j
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Brief Introduction to IBP Prior

@ How to adapt IBP prior to fit our needs for designing BNNs?

@ Assuming an Indian restaurant offers K — oo of dishes (output
dimension) and there are L customers (input dimension).
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Brief Introduction to IBP Prior

@ How to adapt IBP prior to fit our needs for designing BNNs?

@ Assuming an Indian restaurant offers K — oo of dishes (output
dimension) and there are L customers (input dimension).
o Rationale of IBP:
@ The first dimension, say, x; is linked to some of the infinite nodes with

certain probabilities;
@ The second dimension, x; is linked to some of the previously linked

nodes and to some new ones according to certain probabilities;
@ ... until x.

2023.06.04 60 /106
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Brief Introduction to IBP Prior

How to adapt IBP prior to fit our needs for designing BNNs?

Assuming an Indian restaurant offers K — oo of dishes (output
dimension) and there are L customers (input dimension).
o Rationale of IBP:

@ The first dimension, say, x; is linked to some of the infinite nodes with
certain probabilities;

@ The second dimension, x; is linked to some of the previously linked
nodes and to some new ones according to certain probabilities;

@ ... until x.

@ Mathematically, we aim to generate a series of binary random
variables, z; € {0,1}, i=1,2,...,Land j =1,2,....

If z;j =1, the i-th customer (i-th dimension) selects the j-th dish
(linked to the j-th node).
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@ Following the stick-breaking construction idea, first generate:
J
uj ~ Beta(ujla, 1), m; = Hu/, j=12--.
=1
@ Then, the generated probabilities, 7;, are used to populate the matrix
Z, by drawing samples from a Bernoulli distribution:

zj ~ Bernoulli(zj|m;), i=1,2,---,L
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@ Following the stick-breaking construction idea, first generate:
J
uj ~ Beta(ujla, 1), m; = Hu/, j=12--.
=1
@ Then, the generated probabilities, 7;, are used to populate the matrix
Z, by drawing samples from a Bernoulli distribution:

zj ~ Bernoulli(zj|m;), i=1,2,---,L

Stick-Breaking Construction

o=

i =i

T3 = Uylizliy
*—9

j
m= | |uri=12"
=1 {o. 1} K— o
A
®---’®_.@ g ’
(@) i 0 (b)

(a):Beta-Bernoulli model. (b): The binary matrix Z.
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Sergios Theodoridis

f-th layer (f + 1)-th layer
* Sl
. .
i-th node A. -
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L 9"
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f-th layer (f + 1)-th layer f-th layer (f + 1)-th layer

@ o @ @
. . .
Sem O S o
i-th node " . ithnode "o, ~. .
j-th node j-th node
o | S L o S
consider the link i -> j
the link i -> j can be removed
7 5 when ﬂ.|e binary Modeling(z‘fl}
wWi; X Zi; —_— variable via IBP prior
z; = 0

° {{z }‘9 1 are generated via the stick-breaking IBP prior:
J
ujf ~ Beta(ujf]a, 1), TrJf = H uf, z,; ~ Bernoulli(z,fj-\wjf).
I=1

o Binary matrix Z© € R¥"*a"™ with its (if)-th element being z,-’;- for the
f-th layer.
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@ The flexibility of the link-wise formulation allows us to go one step
further.

@ Recently, the stick-breaking IBP prior was combined with a radically
different, biologically-inspired and competition-based activation,
namely the stochastic local winner-takes-all (LWTA). 9,10 11

e LWTA adopts blocks of competing linear units/neurons against
ordinary neurons with nonlinear activation for nonlinearity.

K. Panousis, S. Chatzis, and S. Theodoridis, “Nonparametric Bayesian deep networks with local competition,” in ICML,
K. Panousis, S. Chatzis, A. Alexos, and S. Theodoridis, “Local competition and stochasticity for adversarial robustness in
deep learning,” in AISTAT, 2021.

1
K. Panousis, S. Chatzis, and S. Theodoridis, “Stochastic local winner-takes-all networks enable profound adversarial
robustness,” in NeurlPS, 2021.
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@ Each node comprises a set of linear (inner product) units.

Feng Yin, Lei Cheng, Sergios Theodoridis ICASSP-2023 TUTORIAL, Rhodes, Greece 64 /106



@ Each node comprises a set of linear (inner product) units.

@ The unit with the strongest activation is deemed to be the winner
and passes its output to the next layer, while the rest are being zero.

@ This deterministic winner selection is known as hard LWTA.

@ We turn to stochastic LWTA with enhanced performance.
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o L inputs, K LWTA blocks; J

IBP & LWTA IBP & LWTA linear units.

Output layer
@ Here, L = al, J = 2 for each

layer.

Input layer

layer layer
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o L inputs, K LWTA blocks; J

IBP & LWTA IBP & LWTA linear units.

Output layer
@ Here, L = al, J = 2 for each

layer.

Input layer

layer layer

@ zj; is modeled by IBP as
introduced before.

o Weights:
Wikj i:1,2,...L, k=
1.2,....K, j=1,2...,J.
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o L inputs, K LWTA blocks; J

IBP & LWTA IBP & LWTA linear units.

Output layer
@ Here, L = al, J = 2 for each

layer.

Input layer

layer layer

@ zj; is modeled by IBP as
introduced before.

o Weights:
Wikj i:1,2,...L, k=
1.2,....K, j=1,2...,J.

Linear unit output is:

L J
Vig = EgWix = &g > wigxi, &G €{0,1}, Y &g =1.
=1

i= j=1
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@ The output depends on the
value of &; € {0,1}.
owwiver @ The respective probabilities,
which control the value of ;,
are computed via softmax:

IBP & LWTA IBP & LWTA
layer layer

Input layer

p,. — exp(hkj)
iy
Zj:l exp(hyj)
L
hig =Y _(ZiWikg)Xi-
i=1
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Inference Algorithms for Bayesian DNNs

e Inference (training) for Bayesian deep neural networks follows the
same backpropagation-type of philosophy as that of deterministic
DNNs.
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Inference Algorithms for Bayesian DNNs

e Inference (training) for Bayesian deep neural networks follows the
same backpropagation-type of philosophy as that of deterministic
DNNs.

@ There are, however, two notable differences:

o First, the unknown (synaptic) parameters/weights are now described

via parameterized distributions.
e Second, the evidence function to be maximized is intractable and has

to be approximated by its ELBO.
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@ We focus on the Bayesian deep network that comprises layers with:
e stochastic LWTA blocks;

e stochastic synaptic weights of Gaussian form;

@ a sparsity-inducing mechanism imposed over the network synapses that
is driven via an IBP prior.

LWTA layer

(k-th block)
. “gy A

A
T2 (ﬂ“m

M

Yk1
S
X Wapy 2) : L
24y, . 1, forj =
72 Copy) Yrj = Ekj D WikjT; with &, = { 0 for ] % »
S ‘ = s J 7 Jo
Wlkj«g‘m
_N
e T L

YkJ
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B Synaptic weights:

Prior : p(W,'kj) ~ ./\/’(W,'kj’O, 1), Posterior : q(w,-kj) ~ N(Wikj‘,uikj, Cikj)

B Utility binary random variables:

Prior : Beta(uk|a, 1), Posterior : g(ux) = Beta(uk|ak, bk)

Prior : Bernoulli(zjk|mik), Posterior: q(zix) = Bernoulli(zjx|7ix)

B Indicator random vectors, &:

1
7
Posterior : q(&x) = Categorical (£k‘Pk1, R PkJ)

1
Prior : p(&k) = Categorical(fk\j, cel i.e., all linear units equiprobable.
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B Synaptic weights:

Prior : p(W,'kj) ~ ./\/’(W,'kj’O, 1), Posterior : q(w,-kj) ~ N(Wikj‘,uikj, Cikj)

B Utility binary random variables:

Prior : Beta(uk|a, 1), Posterior : g(ux) = Beta(uk|ak, bk)

Prior : Bernoulli(zjk|mik), Posterior: q(zix) = Bernoulli(zjx|7ix)

B Indicator random vectors, &:

1
7
Posterior : q(&x) = Categorical (£k‘Pk1, R PkJ)

1
Prior : p(&k) = Categorical(fk\j, cel i.e., all linear units equiprobable.

@ The hyperparameters to be optimized include:

6 = [ping}, {Cig b {ants {baks {Tin 3]
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D: input-output training dataset;
Z: set of the synaptic utility indicators across the network layers;
Z: set of winner unit indicators across all blocks of all layers;

W: set of synapse weights across all layers;

U: set of the stick-variables of the sparsity-inducing priors imposed across the
network layers.
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D: input-output training dataset;
Z: set of the synaptic utility indicators across the network layers;

Z: set of winner unit indicators across all blocks of all layers;

W: set of synapse weights across all layers;

U: set of the stick-variables of the sparsity-inducing priors imposed across the
network layers.

e Employing the mean-field approximation g(W, Z, =, U) to obtain:

N C
ELBO(8) :Eq[z > Vie I Gnc(xn; W, Z, B, U)}
n=1c=1
p(Z|V) p(V) ) p(W)
+ Eq4In +EqIn——= +EqIn ———=—~ + E4In
7 q() 7 q(U) " T g(BlZ,W) 7T g(W)
regularizing terms regularizing terms
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o To approximate the expectations in ELBO via samples, we introduce
reparameterization trick.
Example: Let NV (wij|pikj, Cikj) be the current estimate. We have

~ 1/2
Wikj = [hikj + Cik§ e, e~N(0,1).

e In this way, every link is determined explicitly by the pair (wjjk, Cjjk);
and the backpropagation optimizes the means and variances.

@ Reparameterization of the rest variables follows a similar rationale.

K. Panousis, S. Chatzis, and S. Theodoridis, “Nonparametric Bayesian deep networks with local competition,” in ICML,
2019.
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o To approximate the expectations in ELBO via samples, we introduce
reparameterization trick.
Example: Let NV (wij|pikj, Cikj) be the current estimate. We have

- 1/2
Wikj = Mikj + C,-,é - €, e ~N(0,1).
e In this way, every link is determined explicitly by the pair (wjjk, Cjjk);
and the backpropagation optimizes the means and variances.

@ Reparameterization of the rest variables follows a similar rationale.

o Off-the-shelf gradient-based optimizer, e.g., the Adam, can be used
for training.

@ More details about the inference algorithm can be found here.?

K. Panousis, S. Chatzis, and S. Theodoridis, “Nonparametric Bayesian deep networks with local competition,” in ICML,
2019.
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Outline

© Sparsity-Aware Tensor Decomposition Models

Feng Yin, Lei Cheng, Sergios Theodoridis ICASSP-2023 TUTORIAL, Rhodes, Greece 71 /106



Section Goals

@ So far, we have elucidated the sparsity-aware learning for the two
recent supervised data analysis tools, namely the DNNs and GPs.

@ Their underlying idea has inspired recent study for the unsupervised
learning tools, e.g., tensor decomposition.

@ We take the most fundamental canonical polyadic decomposition
(CPD) as an example to elucidate the key ideas of

o Prior Modeling;
o Inference Method.
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Tensors and CPD

@ Tensors are regarded as multi-dimensional generalization of matrices.

@ P99
3 5 rr.
@ P9
@ P90
Mode-2
vector matrix
scalar (1st order) (2" order) (3tr§rz,srg;r)

e Specifically, a P-dimensional (P-D) dataset can be represented by a
P-D tensor D € RAXJ2xJp,
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@ Given a tensor D, unsupervised learning aims to identify the
underlying source signals that generated the observed data:

o “Clustering” in social network analysis
e "Blind source separation” in EEG data analysis
e “Blind signal estimation” in radar/sonar signal processing
& o
i sgmre Fomme oo
L - N X' ot
: S ; IR B -
LSOk . Mg e TR
Lol BIORRE TR g
«® 3 ) — % i H ! *
- A - | Backscattering w A Temain

Figures are from [12]-[13].

12
S. Redif, S. Weiss, and J. G. McWhirter. Relevance of polynomial matrix decompositions to broadband blind signal
separation. Signal processing, 134, 76-86, 2017.

https://www.sciencedirect.com/topics/engineering/blind-signal-separation
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Tensor CPD has been proven to be a powerful tool with good
interpretability. It is formally defined as follows*.

Definition of Tensor CPD

Given a P-D tensor D € R1*%2%Jp CPD seeks to find the vectors
{aV,a?, ... a)}R | such that

D:Za(loa a( ),

rank-1 tensor

|IA(1)5A P aA(P)]]v

(1>

where o denotes vector outer product; A®P) £ [a(”) (P ), e ,ag’)] e R»*R vp, is called
the factor matrix. The minimal number R that ylelds the above expression is termed as
the tensor rank.

14N. D. Sidiropoulos, L. De Lathauwer, X. Fu, K. Huang, E. E. Papalexakis and C. Faloutsos, " Tensor Decomposition for

Signal Processing and Machine Learning,” in IEEE Transactions on Signal Processing, vol. 65, no. 13, pp. 3551-3582, 2017:
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Inspect the definition of tensor CPD:

R
1 2 P
D=) aYoaPo. . 0a"
r=1 rank-1 tensor

2740 A@ . AP
IIA ’A7 ’A ]]7

@ When P = 2, it reduces to decomposing a matrix D € R %% into the summation
of R rank-1 matrices, i.e., D = ZL a0 a®.
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Inspect the definition of tensor CPD:

R
1 2 P
D=) aYoaPo. . 0a"
r=1 rank-1 tensor

2740 A@ . AP
IIA ’A7 ’A ]]7

@ When P = 2, it reduces to decomposing a matrix D € R %% into the summation
of R rank-1 matrices, i.e., D = ZL a0 a®.

@ By defining the term aoa?o...0a" asa P-D rank-1 tensor, CPD essentially

seeks for R rank-1 tensors/components from the observed dataset.
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Inspect the definition of tensor CPD:

R
DoY) oalooalf)
r=1

rank-1 tensor

(1>

HA(I)vA(2)7 L. ,A(P)]],

@ When P = 2, it reduces to decomposing a matrix D € R %% into the summation
of R rank-1 matrices, i.e., D = ZL a0 a®.

@ By defining the term aoa?o...0a" asa P-D rank-1 tensor, CPD essentially

seeks for R rank-1 tensors/components from the observed dataset.
@ Each rank-1 tensor corresponds to one specific underlying source signal.

@ The tensor rank R has a clear physical meaning as the number of the underlying
source signals.

3D Tensor

data 1-st r-th R-th

rank-1 tensor rank-1 tensor rank-1tensor

Feng Yin, Lei Cheng, Sergios Theodoridis ICASSP-2023 TUTORIAL, Rhodes, Greece 2023.06.04 76 / 106



Low-Rank CPD and Sparsity-Aware Modeling

@ In real-world applications, the number of source signals is usually

small.
@ For instance, in brain-source imaging, the EEG data analysis has
shown that only a small fraction of source signals contribute to the

brain activities.

1
5L. Cheng, Z. Chen, Y. -C. Wu and S. Theodoridis, “Towards Flexible Sparsity-Aware Modeling: Automatic Tensor Rank
Learning Using the Generalized Hyperbolic Prior,” IEEE Transactions on Signal Processing, vol:170, pp.~1834-1849, 2022.
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Low-Rank CPD and Sparsity-Aware Modeling

@ In real-world applications, the number of source signals is usually
small.

@ For instance, in brain-source imaging, the EEG data analysis has
shown that only a small fraction of source signals contribute to the
brain activities.

@ This suggests that the CPD model should assume a low tensor rank R
to avoid data overfitting.

@ In the sequel, we show how the low-rankness is probabilistically
embedded into the CPD model through practicing the ideas reported
previously!®.

1
5L. Cheng, Z. Chen, Y. -C. Wu and S. Theodoridis, “Towards Flexible Sparsity-Aware Modeling: Automatic Tensor Rank
Learning Using the Generalized Hyperbolic Prior,” IEEE Transactions on Signal Processing, vol:170, pp.~1834-1849, 2022.
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@ We employ an over-parameterized model for CPD by assuming an
upper-bound value L of tensor rank R, i.e., L > R.

@ The low-rankness implies that (L — R) rank-1 tensors should be zero,
each specified by vectors {agp) PVl

p=1
o Let vector q; = [351); 352); e ;aSP)] € REm > 1. The low-rankness

indicates that a number of vectors in the set {q}}_, are zero vectors.
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@ We employ an over-parameterized model for CPD by assuming an
upper-bound value L of tensor rank R, i.e., L > R.

@ The low-rankness implies that (L — R) rank-1 tensors should be zero,
each specified by vectors {agp) PVl

p:
P
o Let vector q; = [351); 352); e ;aSP)] € RXp-1% VI The low-rankness
indicates that a number of vectors in the set {q}}_, are zero vectors.

@ To model such sparsity, we adopt the GSM prior:

P
p=1 JP

>
p(ar) = / T Al 0. C)p(Chmp)dc,

i=1

P
= [ TT V@ 0.anp(cin)da
p=1
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@ To model such sparsity, we adopt the GSM prior:

p(ar) / H J\/[q,],,O Cp(Crsmp)dq,

_ / HN(aSP);o,cll)p(c,;np)dcl-
p=1

‘ GSM prior p(q) H Mixing distribution p(;) ‘
Student’s t Inverse Gamma: p({;; mp = [a, b]) = 1G(;; a, b)
Normal-Jefferys Log-uniform: p(¢imp =[]) x \Tlll
Laplacian Gamma: p(¢/;mp = [a, b]) = Ga((; a, b)

Generalized inverse Gaussian:
P(Grimp = [a, b, A]) = GIG((ji a, b, \)
¢ =Tv,mp = [a, b]
Horseshoe Half Cauchy: p(7;) = C*(0, a)
p(vr) = C*(0,b)

Generalized hyperbolic

Feng Yin, Lei Cheng, Sergios Theodoridis ICASSP-2023 TUTORIAL, Rhodes, Greece 2023.06.04
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275N,
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1
£

R B +I—
3D Tensor data X 3D Tensor data B A
x 1-strank-Ltensor I3 rank; ;( tensor L-th rank-1 tensor X 1-strank-1tensor  [-th rank-1tensor L-th rank-1 tensor

i denotes zero

the rank-1 tensor
becomes all zero

; . Modeling
tied together via when the common "
the same scale —  scale parameter elements

parameter (; G—0 via
GSM priors
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Remark 1 (Nonnegative Modeling)

If the factor matrices are further constrained to be non-negative for
enhanced interpretability in certain applications, simple modification, that
is, multiplying a unit-step function U(agp) > 0) (which returns one when

asp) > 0 or zero otherwise) to the prior derived in the last slide, can be

made to embed both the non-negativeness and the low-rankness!®.

16L. Cheng, X. Tong, S. Wang, Y. -C. Wu and H. V. Poor, “Learning Nonnegative Factors From Tensor Data: Probabilistic
Modeling and Inference Algorithm,” in IEEE Transactions on Signal Processing, vol. 68, pp. 1792-1806, 2020.
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Remark 2 (Extensions to Other Tensor Models)

@ Similar ideas have been applied to other tensor decomposition models
including Tucker decomposition (TuckerD) and tensor train
decomposition (TTD)".

@ In these works, one first assumes an over-parameterized model by
setting the model configuration parameters (e.g., multi-linear ranks in
TuckerD and TT ranks in TTD) to be large numbers, and then
imposes GSM prior on the associated model parameters to control the
model complexity.

17L. Cheng, Z. Chen, and Y.-C. Wu. “Bayesian Tensor Decomposition for Signal Processing and Machine Learning”,
Springer, 2023.

Feng Yin, Lei Cheng, Sergios Theodoridis ICASSP-2023 TUTORIAL, Rhodes, Greece 2023.06.04 82 /106



ce Algorithms for Bayesian TDs

@ Now, we introduce the inference algorithm design for Bayesian tensor
decompositions.

@ Our focus is on the key ideas for inferring the Bayesian tensor CPD
model with the Gaussian likelihood and the GSM prior.

@ For other tensor decomposition formats, the associated inference
algorithm follows a similar rationale!’.

1
7L. Cheng, Z. Chen, and Y.-C. Wu. “Bayesian Tensor Decomposition for Signal Processing and Machine Learning”,
Springer, 2023.
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@ The goal of inference is to estimate the posterior distributions of
factor matrices {A(P) & R7*LYP | from possibly incomplete P-D
tensor data observations Ygq € RA**Jp,

® Yj ... jo is observed if the P-tuple indices (ji,--- ,jp) belongs to €.
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@ The goal of inference is to estimate the posterior distributions of
factor matrices {A(P) & R7*LYP | from possibly incomplete P-D
tensor data observations Ygq € RA**Jp,

® Yj ... jo is observed if the P-tuple indices (ji,--- ,jp) belongs to €.

@ The forward problem is commonly modeled as a Gaussian likelihood:

pVal{AN ) 8 = [ N@ueue i [AY, AP 7Y,

(1, jp)ES

@ The prior was introduced in previous slides.
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Inference Algorithms for Bayesian TDs

@ Under the evidence maximization framework, the inference problem
can be formulated as

£(a(6)) = [ a(0)1og "g();,;’)de.

@ Unknown parameters:

0 £ {{APHL_1 {¢Yy, BY.
@ The joint pdf:

p(D,0) £ p(Va, {({AP}F_1 {1}y, B)).
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@ To get over the intractable integration difficulty, the ELBO
maximization problem is solved by further constraining q(€) into a
functional family F, i.e., q(0) € F.

@ Among all the functional families, the mean-field family is the most
widely used one:

q(0) = Hq (AP)Yq({¢}1)a(B).
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o Inspect the mean-field family:

q(0) = Hq (AP q({¢}1)a(B).

@ The factorized structure above inspires the idea of block minimization.
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o Inspect the mean-field family:

q(0) = Hq (AP q({¢}1)a(B).

@ The factorized structure above inspires the idea of block minimization.

o After fixing the variational pdfs {q(0;)};««, the optimal q(6y) was
shown to be:

P (EHJ# a(9)) [inp (P, 0)]>
[ exp (El—lj#k a(6)) [Inp (D, 0)]) d6,

q" (0k) =
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e MF-VI imposes a factorization structure on q(@), which implies
statistical independence of the variables 8, given observed dataset D.

@ If this is not the case, the mean-field approximation will lead to
mismatch when approaching the ground-truth posteriors.
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e MF-VI imposes a factorization structure on q(@), which implies
statistical independence of the variables 8, given observed dataset D.

@ If this is not the case, the mean-field approximation will lead to
mismatch when approaching the ground-truth posteriors.

@ To achieve more accurate posterior estimation, it is trendy to employ
more advanced variational approximation techniques, e.g., Stein VI.
@ Practical issues:

© informative initial values
@ computational complexity
© low SNR region difficulties
Q etc.
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Outline

@ Applications of Modern Sparsity-Aware Models
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Section Goals

Finally, we showcase the following practical applications:
@ Time series prediction using Gaussian process (GP) models;
@ Adversarial learning using Bayesian deep neural networks (DNNs);

@ Social group clustering and image completion using unsupervised
tensor decompositions (TDs).
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@ Consider classic 1D time series datasets with different lengths and
evaluate multi-step ahead prediction in terms of MSE.

e Compare the sparsity-promoting GP models (including GSMGP,

SSGP, SMGP) with some SOTA time series prediction models.

Name GSMGP  SSGP SMGP LSTM Informer  ARIMA
MSE MSE MSE MSE MSE MSE

ECG 1.3E-02 1.6E-01 19E-02 20E-02 54E-02 1.8E-0]
o, 15640  20E+02 1LIE+0 21E+0  B4E+01 49E+0
Electricity 47E+03 826+03 7.5E+03 A4JE+03 B83E+03 1.2E+04
Employment ~ 1.1E+02 77E+01 O.JE+02 4.3E+02 20E+03 3.9E+02
Hoel 89E+02 19E+04 28E+03 78E+03 23E+04 17E+04
Passenger 19E+02 69E+02 1.6E+02 1.6E+02 1.2E+02 4.5E+03
Clay 19E+02 53E+02 3.3E+02 27E+02 1.4E+02 3.3E+02
Unemployment  3.6E+03 2.1E+04 1.4E+04 3.5E+03 38E+03 1.5E+04

Feng Yin, Lei Cheng, Sergios Theodoridis

ICASSP-2023 TUTORIAL, Rhodes, Greece
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@ Synthetic data with three modes.
@ Sparse solution identifies the most effective frequency components of
the data and, thus, leads to good model interpretability.

50
40 3000
S <
Sa0 S 30
.‘E” 52000 20
[} [
220 2 bo
1000 [ 1
10 [y
I 0 01 02 03 04
0 o
0 0.1 0.2 0.3 04 0.5 0 0.1 0.2 0.3 0.4 05

Frequency 1 Frequency u
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Time Series Prediction via GPs: Real 5G Dataset!®

@ Natural uncertainty region of a point prediction for GP models over
deterministic models.

8Feng Yin et.al., “Wireless traffic prediction with scalable Gaussian process: Framework, algorithms, and verification”,
IEEE JSAC, pp.1291-1306,2019.
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Time Series Prediction via GPs: Real 5G Dataset!®

@ Natural uncertainty region of a point prediction for GP models over
deterministic models.

Traning Data Traning Data
|- Test Data. |- Test Data
5000 —Prediction 5000 |-Prediction
N |=Uncertainty Region N
g & 4000
= 3000 =
3 € 3000
£ 2000 £
H £ 2000)
§ 1000} ]
0 1000
0 100 200 300 400 500 600 700 0 100 200 300 400 500 600 700
time time

@ GSMGP with @ = 500 fixed grids and eyjapg = 0.28; LSTM model with
EMAPE = 1.12.
@ The gray shaded areas represent the uncertainty region of GP model.

Feng Yin et.al., “Wireless traffic prediction with scalable Gaussian process: Framework, algorithms, and verification”,

IEEE JSAC, pp.1291-1306,2019.
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Adversarial Learning via Bayesian DNNs

@ Recent studies have revealed that DNNs are highly susceptible to
adversarial examples, i.e., cleverly crafted examples whose purpose is
that of fooling a considered model into misclassification.
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Adversarial Learning via Bayesian DNNs

@ Recent studies have revealed that DNNs are highly susceptible to
adversarial examples, i.e., cleverly crafted examples whose purpose is
that of fooling a considered model into misclassification.

@ For example, projected gradient descent (PGD)-based adversarial
example construction.
@ Under PGD, the obtained perturbed modification to the original

example, x, which seems small or even imperceptible to human being,
can fool the model to misclassification.
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@ Drawing upon this vulnerability, adversarial training has been recently
devoted towards more reliable and robust DNNs.

@ Stochastic modeling rationale: Introducing stochasticity into the
considered architecture, e.g., by randomizing the input data and/or
the learning model itself.

@ Bayesian learning offers a natural stochastic defense framework
towards more adversarially robust networks.

94 /106
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The so-called doubly stochastic nature stems from:
@ Sparsity-promoting link-wise non-parametric IBP prior;

@ Stochastic adaptation of the biologically inspired and
competition-based LWTA activation.

IBP & LWTA IBP & LWTA

Output layer
layer layer

Input layer
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Table: Natural and Robust accuracy under a conventional PGD attack with 20
steps and 0.007 step-size using WideResNet-34 models with different widen
factors.

Adversarial Training-PGD

Natural Accuracy (%) Robust Accuracy (%)
Widen Factor Baseline Stochastic LWTA | Baseline Stochastic LWTA
1 74.04 87.0 49.24 81.87
5 83.95 91.88 54.36 83.4
10 85.41 92.26 55.78 84.3

o Baseline: B. Wu et.al. "Do wider neural networks really help
adversarial robustness?” in Proc. Advances in Neural Information
Processing Systems (NeurlPS), 2021.

@ Using the same PGD-based Adversarial Training scheme for all
models.

Feng Yin, Lei Cheng, Sergios Theodoridis ICASSP-2023 TUTORIAL, Rhodes, Greece 2023.06.04 96 / 106



Table: Robust Accuracy (%) comparison under the AutoAttack framework.

Method AutoAttack
HE 53.74
WAR 54.73
Pre-training 1 54.92
Data augmentation { 65.88
WART 61.84
Stochastic-LWTA/PGD/WideResNet-34-1 74.71
Stochastic-LWTA/PGD/WideResNet-34-5 81.22
Stochastic-LWTA/PGD/WideResNet-34-10 82.60
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Table: Robust Accuracy (%) comparison under the AutoAttack framework.

Method AutoAttack
HE 53.74
WAR 54.73
Pre-training 1 54.92
Data augmentation { 65.88
WART 61.84
Stochastic-LWTA/PGD/WideResNet-34-1 74.71
Stochastic-LWTA/PGD/WideResNet-34-5 81.22
Stochastic-LWTA/PGD/WideResNet-34-10 82.60

@ | denotes models that are trained with additional unlabeled data.

@ The AutoAttack performance corresponds to the final robust accuracy
after employing all the attacks in AA.
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Unsupervised Learning via Bayesian TDs

@ We present two unsupervised learning applications:
@ Social group clustering: adopts Bayesian tensor CPD,;
@ Image completion: employs Bayesian tensor TTD.
@ Those algorithms bypass the need of hyper-parameters tuning and
effectively avoid overfitting.
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Bayesian Tensor CPD for Social Group Clustering

o Dataset: ENRON E-mail corpus dataset (a 3-D tensor with the size
184 x 184 x 44 (4 of sender, # of receiver, { of day))
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Bayesian Tensor CPD for Social Group Clustering

o Dataset: ENRON E-mail corpus dataset (a 3-D tensor with the size
184 x 184 x 44 (4 of sender, # of receiver, { of day))

@ We aim to demonstrate how the Bayesian tensor CPD can be used to
simultaneously

e determine the number of social groups (automatic tensor rank
determination),

o cluster people into different groups (interpretable source separation),

e extract interpretable temporal profiles of different social groups
(interpretable source separation).
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Bayesian Tensor TTD for Image Completion

@ Color images are naturally 3-D tensor.

@ Fold an image into a higher dimensional tensor (e.g., 9-D tensor), and
then apply TTD to recover the missing pixels.
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Bayesian Tensor TTD for Image Completion

@ Color images are naturally 3-D tensor.

@ Fold an image into a higher dimensional tensor (e.g., 9-D tensor), and
then apply TTD to recover the missing pixels.

@ For a P-D tensor, TTD has P — 1 hyper-parameters (called TT
ranks).

@ Manually tuning different combinations of these hyper-parameters for
overfitting avoidance is time-consuming.

@ Bayesian TTD, using the ideas introduced before, can automatically
learn the most suitable TT-ranks to match the underlying image
pattern.
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@ Experimental results for visual
comparison on image completion
with 80% missing data.

@ Ground-truth images are in the
top row.

@ The second row includes the
images with missing values.

@ The third to the bottom rows
include results from Bayesian
TTD, TTC-TV, TMAC-TT, and
STTO.
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Outline

@ Conclusion and Future Directions
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Conclusion

Presented a gentle overview of state-of-the-art sparsity-promoting
priors for both Bayesian parametric and nonparametric models.

Constrained our focus to modern GP models, Bayesian DNNs, and
TDs.

Introduced advanced prior design strategies and inference algorithms.

Demonstrated a wide spectrum of signal processing and machine
learning applications.
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The reported results indicated that:
@ Sparsity-promoting priors are adaptive to varying data and enable
automatic model structure selection;
@ Sparsity-promoting priors lead to natural and reasonable uncertainty
quantification;
© Sparse solution can better reveal the underlying characteristics of a
target system/signal with the most effective components.
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Future Directions

Potential challenges include but not limited to:

Quality of the posterior/predictive distribution, compared with that
provided by conformal prediction.

Issues with misspecification of the learning model and noise statistics.
Emerging sparsity-promoting mechanisms inspired from neuroscience.

More emerging applications in complex systems, such as 6G, ISAC,
autonomous driving system, ocean sensing, etc.

Sparsity-awareness in emerging learning paradigms and large language
models (LLMs).
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Thanks for your attention!
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